
 

Module 2: Deterministic Finite Automata (DFA) and Regular Languages 

This module offers an exhaustive and deeply detailed examination of Deterministic Finite 
Automata (DFA) and their profound connection to the family of regular languages. We will 
meticulously break down the formal definition of DFAs, providing multiple illustrative 
examples to solidify understanding, and thoroughly explain the precise mechanism by which 
these automata recognize languages. A cornerstone of theoretical computer science is the 
ability to formally prove the correctness and behavior of computational models; therefore, we 
will dedicate a significant portion to constructing a formal argument of correctness for a 
DFA's language recognition. Subsequently, we will immerse ourselves in the crucial closure 
properties that characterize regular languages, demonstrating how common language 
operations (union, intersection, concatenation, Kleene star, complement, and reversal) 
preserve regularity. The product construction, a fundamental technique, will be unveiled to 
concretely illustrate how several of these closure properties are achieved at the automaton 
level. Finally, we will confront the inherent limitations of finite automata by investigating the 
concept of non-regularity, providing both intuitive insights and, most importantly, a rigorous 
application of the Pumping Lemma for Regular Languages – the definitive formal technique 
for proving that a language is not regular. 

Deterministic Finite Automaton (DFA) 
A Deterministic Finite Automaton (DFA) is an abstract mathematical model of a 
computational device, representing the simplest form of a finite-state machine. Its primary 
function is to accept or reject a given sequence of input symbols (a string) based on a 
predefined set of rules. The term "deterministic" is absolutely critical, signifying that for every 
possible combination of a current state and an input symbol, there is always one and only 
one uniquely determined next state. This unwavering predictability is the defining feature that 
distinguishes DFAs from other, more powerful, automata. 

Formal Definition: A 5-Tuple Specification 

A DFA is precisely defined as a 5-tuple, M=(Q,Σ,δ,q0 ,F), where each element is a set or a 
function with a specific purpose: 

● Q (Set of States): This is a finite, non-empty set of states. Each state represents a 
distinct configuration or a summary of the relevant information the automaton has 
"remembered" about the portion of the input string processed so far. Think of states 
as nodes in a graph. For instance, in a DFA recognizing valid integer inputs, states 
might represent "initial," "digit encountered," "signed number," or "leading zero." The 
finiteness of Q is the ultimate source of a DFA's limitations. 

● Σ (Alphabet): This is a finite, non-empty set of input symbols. This set comprises all 
the possible characters or symbols that can appear in the strings the DFA is 
designed to process. It is the vocabulary of the language. Examples include {0,1} for 
binary strings, {a,b,c} for character sequences, or {+,−,0,1,...,9} for numerical 
expressions. The DFA can only process symbols that are part of its defined alphabet. 

● δ (Transition Function): This is the heart of the DFA's operational logic. It is a total 
function that maps a pair consisting of a current state and an input symbol to a 
unique next state. Formally, δ:Q×Σ→Q. This function defines every possible move 
the DFA can make. For any state q∈Q and any input symbol a∈Σ, δ(q,a) will always 



 

yield exactly one state q′∈Q. This deterministic nature means there's no ambiguity, 
no choices, and no "guessing" involved in the DFA's operation. It's often visualized as 
directed edges labeled with symbols in a state graph. 

● q0  (Initial State): This is a distinguished state from Q, denoted as q0 ∈Q. The DFA 
always begins its processing of any input string in this state. It's the starting point of 
every computation path. 

● F (Set of Final/Accepting States): This is a subset of Q, denoted as F⊆Q. These 
are the states that signify successful recognition of a string. If, after processing an 
entire input string, the DFA finds itself in any state that belongs to the set F, then the 
input string is said to be "accepted" by the DFA. If the DFA finishes in a state not in F, 
the string is "rejected." The language recognized by the DFA is precisely the 
collection of all strings it accepts. 

Illustrative Examples: 

Let's solidify the formal definition with a couple of practical examples: 

1. DFA for Binary Strings Ending in '0': 
This DFA accepts all binary strings that conclude with the symbol '0'. 

○ Q={q0 ,q1 } (where q0  means "not yet seen a '0' at the end or saw '1' recently," 
and q1  means "last symbol seen was a '0'"). 

○ Σ={0,1}. 
○ q0 : Initial state. 
○ F={q1 }: Only accept if the string ends with a '0'. 
○ δ: 

■ δ(q0 ,0)=q1  (If we were not in a state ending in '0' and read '0', now we 
are.) 

■ δ(q0 ,1)=q0  (If we were not in a state ending in '0' and read '1', we're 
still not.) 

■ δ(q1 ,0)=q1  (If we ended in '0' and read '0', we still end in '0'.) 
■ δ(q1 ,1)=q0  (If we ended in '0' and read '1', we no longer end in '0'.) 

2. Let's trace "110": 
○ Start at q0 . 
○ Read '1': δ(q0 ,1)=q0 . Current state: q0 . 
○ Read '1': δ(q0 ,1)=q0 . Current state: q0 . 
○ Read '0': δ(q0 ,0)=q1 . Current state: q1 . 
○ End of string. q1 ∈F, so "110" is accepted. 

3. Let's trace "101": 
○ Start at q0 . 
○ Read '1': δ(q0 ,1)=q0 . Current state: q0 . 
○ Read '0': δ(q0 ,0)=q1 . Current state: q1 . 
○ Read '1': δ(q1 ,1)=q0 . Current state: q0 . 
○ End of string. q0 ∈/F, so "101" is rejected. 

4. DFA for Strings Containing 'ab' as a Substring: 
○ $Q = \{q_{\text{start}}, q_{\text{seen_a}}, q_{\text{seen_ab}}\}$ 
○ Σ={a,b} 
○ q0 =qstart  
○ $F = \{q_{\text{seen_ab}}\}$ 



 

○ δ: 
■ $\delta(q_{\text{start}}, a) = q_{\text{seen_a}}$ 
■ δ(qstart ,b)=qstart  
■ $\delta(q_{\text{seen_a}}, a) = q_{\text{seen_a}}$ (if we see 'a' again, 

we're still looking for a 'b') 
■ $\delta(q_{\text{seen_a}}, b) = q_{\text{seen_ab}}$ (we found 'ab'!) 
■ $\delta(q_{\text{seen_ab}}, a) = q_{\text{seen_ab}}$ (once 'ab' is 

found, it remains found, even if another 'a' or 'b' follows) 
■ $\delta(q_{\text{seen_ab}}, b) = q_{\text{seen_ab}}$ 

How DFAs Recognize Languages (Operational Semantics): 

The process by which a DFA recognizes a language can be formally described using an 
extended transition function. Let δ^:Q×Σ∗→Q be the extended transition function, which 
maps a state and an entire string (not just a single symbol) to a resulting state. 

● Base Case: For the empty string ϵ, δ^(q,ϵ)=q for any state q∈Q. (Reading nothing 
keeps the DFA in its current state). 

● Recursive Step: For any string w∈Σ∗ and any symbol a∈Σ, δ^(q,wa)=δ(δ^(q,w),a). 
This means to find the state after processing wa starting from q, first find the state 
after processing w (recursively), and then apply the single-step transition function δ 
with the last symbol a. 

A string w is accepted by a DFA M=(Q,Σ,δ,q0 ,F) if and only if δ^(q0 ,w)∈F. The language 
recognized by M, denoted L(M), is the set of all such accepted strings: 

L(M)={w∈Σ∗∣δ^(q0 ,w)∈F}. 

Formal Argument of Correctness 
Proving that a DFA accepts precisely the intended language is a critical step in verifying its 
design. This typically involves a rigorous mathematical proof, often relying on induction, to 
demonstrate that the DFA's behavior precisely matches the language's definition. We must 
show a biconditional relationship: a string is in the language if and only if the DFA accepts it. 

Let's use the DFA designed to accept binary strings containing an even number of 1s. 

M=({qeven ,qodd },{0,1},δ,qeven ,{qeven }). 

We want to prove L(M)={w∈{0,1}∗∣w has an even number of 1s}. 

To prove this, we can define a property P(w) for any string w∈{0,1}∗: 

P(w): "δ^(qeven ,w)=qeven  if w has an even number of 1s, AND δ^(qeven ,w)=qodd  if w has 
an odd number of 1s." 

We will prove P(w) by induction on the length of w, denoted ∣w∣. 



 

Base Case: ∣w∣=0 

The only string of length 0 is ϵ (the empty string). 

● ϵ has zero '1's, which is an even number. 
● By the definition of δ^, δ^(qeven ,ϵ)=qeven . 
● Since qeven  is the required state for an even number of '1's, P(ϵ) holds. 

Inductive Hypothesis (IH): 

Assume that P(x) holds for all strings x such that ∣x∣=k, for some arbitrary non-negative 
integer k. 

That is, for any string x of length k: 

● If x has an even number of 1s, then δ^(qeven ,x)=qeven . 
● If x has an odd number of 1s, then δ^(qeven ,x)=qodd . 

Inductive Step: For ∣w∣=k+1 

Let w be an arbitrary string of length k+1. We can write w=x⋅a, where x is a string of length k 
and a is a single symbol from {0,1}. 

We need to show that P(w) holds for w. We consider two sub-cases based on the last 
symbol a: 

Case 1: a=0 

The number of 1s in w=x0 is the same as the number of 1s in x. 

● Subcase 1.1: x has an even number of 1s. 
By IH, δ^(qeven ,x)=qeven . 
Then, δ^(qeven ,x0)=δ(δ^(qeven ,x),0)=δ(qeven ,0)=qeven . 
Since x0 also has an even number of 1s, this matches the condition for P(w). 

● Subcase 1.2: x has an odd number of 1s. 
By IH, δ^(qeven ,x)=qodd . 
Then, δ^(qeven ,x0)=δ(δ^(qeven ,x),0)=δ(qodd ,0)=qodd . 
Since x0 also has an odd number of 1s, this matches the condition for P(w). 

Case 2: a=1 

The number of 1s in w=x1 is one more than the number of 1s in x. 

● Subcase 2.1: x has an even number of 1s. 
By IH, δ^(qeven ,x)=qeven . 
Then, δ^(qeven ,x1)=δ(δ^(qeven ,x),1)=δ(qeven ,1)=qodd . 
Since x1 now has an odd number of 1s, this matches the condition for P(w). 

● Subcase 2.2: x has an odd number of 1s. 
By IH, δ^(qeven ,x)=qodd . 



 

Then, δ^(qeven ,x1)=δ(δ^(qodd ,x),1)=δ(qodd ,1)=qeven . 
Since x1 now has an even number of 1s, this matches the condition for P(w). 

In all cases, P(w) holds for strings of length k+1. 

Conclusion: 

By the principle of mathematical induction, the property P(w) holds for all strings w∈{0,1}∗. 

Since the set of final states F for this DFA is {qeven }, a string w is accepted by the DFA if 
and only if δ^(qeven ,w)=qeven . 

Based on P(w), this occurs if and only if w has an even number of 1s. 

Therefore, the DFA correctly recognizes the language of binary strings containing an even 
number of 1s. 

Properties of Regular Languages - Closure Properties 
Regular languages constitute a fundamental class of languages in formal language theory. A 
defining characteristic of this class is its closure properties. A class of languages is said to 
be "closed" under an operation if, whenever you apply that operation to one or more 
languages within that class, the resulting language is also a member of the same class. 
These properties are extremely powerful, as they imply that if we combine regular languages 
using these operations, the resulting language will invariably remain regular, and thus, can 
still be recognized by a DFA (or expressed by a regular expression). This provides a robust 
framework for building and manipulating complex regular languages from simpler ones. 

Here are the key closure properties of regular languages: 

● Union (L1 ∪L2 ): 
If L1  and L2  are both regular languages over the same alphabet Σ, then their union, 
L1 ∪L2 ={w∣w∈L1  or w∈L2 }, is also a regular language. This means we can 
construct a DFA that accepts any string that is present in L1 , or in L2 , or in both. 

● Intersection (L1 ∩L2 ): 
If L1  and L2  are regular languages over Σ, then their intersection, L1 ∩L2 ={w∣w∈L1  
and w∈L2 }, is also a regular language. This allows us to build a DFA that accepts 
only those strings that are common to both L1  and L2 . 

● Concatenation (L1 L2 ): 
If L1  and L2  are regular languages, then their concatenation, L1 L2 ={xy∣x∈L1  and 
y∈L2 }, is also a regular language. This operation effectively "glues" strings together: 
for every string x from L1  and every string y from L2 , the string xy is in the 
concatenated language. 

● Kleene Star (L∗): 
If L is a regular language, then its Kleene star (or Kleene closure), 
L∗={ϵ}∪L∪LL∪LLL∪…, is also a regular language. This operation denotes zero or 
more concatenations of strings from L. The empty string ϵ is always included. For 
example, if L={a,b}, then L∗ would include ϵ,a,b,aa,ab,ba,bb,aaa,aab,…. 

● Complement (Lˉ): 
If L is a regular language over an alphabet Σ, then its complement, 



 

Lˉ={w∈Σ∗∣w∈/L}, is also a regular language. This means if you have a DFA for L, 
you can construct a DFA for Lˉ that accepts exactly those strings that the original 
DFA rejects, and rejects those it accepts. This is typically achieved by simply 
swapping the final and non-final states of the original DFA. 

● Reversal (LR): 
If L is a regular language, then its reversal, LR={wR∣w∈L} (where wR denotes the 
string w read backwards), is also a regular language. For example, if "cat" is in L, 
then "tac" is in LR. 

These properties are foundational to understanding the expressive power of regular 
languages and are widely applied in areas such as compiler design (lexical analysis), pattern 
matching (regular expressions), and network protocol analysis. 

Product Construction 
The Product Construction is a powerful and elegant method for constructing a new DFA from 
two existing DFAs. It serves as a direct and formal proof for the closure properties of regular 
languages under intersection and union. The core idea is to simulate the parallel operation 
of two DFAs simultaneously. 

Let's assume we have two DFAs: 

● M1 =(Q1 ,Σ,δ1 ,q01  ,F1 ) which recognizes language L1 . 
● M2 =(Q2 ,Σ,δ2 ,q02  ,F2 ) which recognizes language L2 . 

We want to construct a new DFA MP =(QP ,Σ,δP ,q0P  ,FP ) that recognizes either L1 ∩L2  or 
L1 ∪L2 . 

Shared Components of the Product Construction: 

Regardless of whether we're building for intersection or union, several components of the 
product DFA are constructed identically: 

● QP  (States of the Product DFA): 
QP =Q1 ×Q2 ={(qa ,qb )∣qa ∈Q1  and qb ∈Q2 }. 
The states of the product DFA are ordered pairs, where the first element is a state 
from M1  and the second is a state from M2 . Each state (qa ,qb ) in MP  conceptually 
represents the state where M1  is currently in qa  and M2  is currently in qb . This allows 
MP  to keep track of the progress of both original DFAs simultaneously. 

● δP  (Transition Function of the Product DFA): 
δP ((qa ,qb ),x)=(δ1 (qa ,x),δ2 (qb ,x)). 
When the product DFA MP  is in state (qa ,qb ) and reads an input symbol x, it 
transitions to a new state where the first component is the state M1  would move to 
from qa  on input x, and the second component is the state M2  would move to from 
qb  on input x. This ensures that the simulation of both DFAs is faithful and 
progresses in lockstep. 

● q0P   (Initial State of the Product DFA): 
q0P  =(q01  ,q02  ). 



 

The product DFA starts with both original DFAs effectively starting in their respective 
initial states. 

Distinguishing Component: FP  (Final States of the Product DFA) 

The definition of the set of final states FP  is what differentiates the product construction for 
intersection from that for union. 

Product Construction for Intersection (L1 ∩L2 ): 

To recognize strings that are in both L1  and L2 , the product DFA must reach a state where 
both M1  and M2  are in their accepting configurations. 

● FP  for Intersection: 
FP =F1 ×F2 ={(qa ,qb )∣qa ∈F1  and qb ∈F2 }. 
A state (qa ,qb ) is an accepting state in MP  if and only if qa  is an accepting state in 
M1  AND qb  is an accepting state in M2 . 

Reasoning for Intersection: 

A string w is accepted by MP  if δ^P (q0P  ,w)∈FP . 

By definition of δ^P , δ^P ((q01  ,q02  ),w)=(δ^1 (q01  ,w),δ^2 (q02  ,w)). 

For this resulting state to be in FP , we must have δ^1 (q01  ,w)∈F1  AND δ^2 (q02  ,w)∈F2 . 

This means w must be accepted by M1  AND w must be accepted by M2 . 

Therefore, MP  accepts exactly the strings in L1 ∩L2 , proving that the intersection of two 
regular languages is regular. 

Product Construction for Union (L1 ∪L2 ): 

To recognize strings that are in either L1  or L2  (or both), the product DFA must reach a state 
where at least one of M1  or M2  is in its accepting configuration. 

● FP  for Union: 
FP ={(qa ,qb )∣qa ∈F1  or qb ∈F2 }. 
A state (qa ,qb ) is an accepting state in MP  if and only if qa  is an accepting state in 
M1  OR qb  is an accepting state in M2 . 

Reasoning for Union: 

A string w is accepted by MP  if δ^P (q0P  ,w)∈FP . 

As before, δ^P ((q01  ,q02  ),w)=(δ^1 (q01  ,w),δ^2 (q02  ,w)). 

For this resulting state to be in FP , we must have δ^1 (q01  ,w)∈F1  OR δ^2 (q02  ,w)∈F2 . 

This means w must be accepted by M1  OR w must be accepted by M2 . 



 

Therefore, MP  accepts exactly the strings in L1 ∪L2 , proving that the union of two regular 
languages is regular. 

The product construction elegantly shows how the finite memory (states) of two DFAs can be 
combined to achieve more complex recognition tasks, thus formally demonstrating the 
closure under intersection and union. This method can also be adapted for other closure 
properties like complementation (by simply swapping final and non-final states) and even 
difference. 

Limitations of Automata - Nonregularity 
Despite their versatility, Deterministic Finite Automata, and by extension, regular languages, 
have inherent and fundamental limitations. These limitations stem directly from the 
finiteness of their memory, which is embodied by the finite set of states, Q. A DFA can 
only "remember" a bounded amount of information about the input string it has processed up 
to any given point. It cannot store an unbounded count, nor can it compare arbitrary-length 
parts of a string. 

Intuitive Understanding of Why Some Languages are Not Regular: 

Consider languages that require a computational device to "count" beyond a fixed limit, or to 
"remember and compare" dynamically growing portions of a string. DFAs, with their finite 
states, are fundamentally incapable of performing such tasks for arbitrarily long inputs. 

Let's illustrate with the language L={anbn∣n≥0}. This language consists of strings where an 
arbitrary number of 'a's is followed by an equal number of 'b's. Examples include ϵ (for n=0), 
ab (for n=1), aabb (for n=2), aaabbb (for n=3), and so on. 

Imagine trying to build a DFA for this language. As the DFA reads the initial sequence of 'a's, 
it needs to keep track of how many 'a's it has encountered. Why? Because it later needs to 
ensure that the number of 'b's that follow exactly matches this count. 

If the DFA has k states, what happens when it processes the string ak+1bk+1? 

As it reads the first k+1 'a's, it transitions through k+1 states. Since there are only k unique 
states, by the Pigeonhole Principle, the DFA must, at some point, revisit at least one state 
while processing these k+1 'a's. This means there's a loop in the state transitions. 

Suppose the DFA enters state qx  after reading ai and again enters state qx  after reading aj, 
where i<j≤k+1. The substring aj−i (corresponding to the path from qx  back to qx ) effectively 
forms a "loop" that the DFA can traverse an arbitrary number of times. 

If the DFA is designed to accept ajbj, it means that after reading aj, it's in some state q′ and 
from q′ it eventually reaches an accepting state after reading bj. However, because of the 
loop on 'a's, if it accepted ajbj, it would also accept aj−(j−i)bj=aibj (by removing the loop 
segment) or aj+(j−i)bj (by repeating the loop segment). Since i=j, these strings aibj and 
aj+(j−i)bj do not have an equal number of 'a's and 'b's, and thus are not in L. 

This inherent inability to "remember" an arbitrarily large count of 'a's to compare with a later 
count of 'b's highlights the core limitation of DFAs. They cannot handle languages that 



 

require unbounded memory or context-sensitive comparisons across a dynamically growing 
input. 

Other examples of non-regular languages based on this intuitive understanding include: 

● The language of palindromes over {0,1}: L={wwR∣w∈{0,1}∗} (e.g., 0110,00100). A 
DFA would need to remember the entire first half of the string to compare it, in 
reverse, with the second half. This requires unbounded memory. 

● The language of strings with an equal number of '0's and '1's: L={w∣#0 (w)=#1 (w)}. 
Similar to anbn, this requires exact counting. 

● The language L={ak∣k is a prime number}. Determining primality requires complex 
arithmetic, far beyond the capabilities of finite state memory. 

Pumping Lemma for Regular Languages 
The Pumping Lemma for Regular Languages is a cornerstone theorem in formal language 
theory. It provides a powerful and systematic method for proving that a given language is not 
regular. It's a "necessary condition" for regularity: if a language is regular, it must satisfy the 
Pumping Lemma's conditions. Therefore, if we can demonstrate that a language fails to 
satisfy these conditions, we have definitively proven that it cannot be regular. 

Formal Statement of the Pumping Lemma: 

If L is a regular language, then there exists an integer p≥1 (this p is called the pumping 
length, and its value depends on the specific regular language and the DFA recognizing it – 
usually related to the number of states in the minimal DFA for L) such that any string s∈L 
with ∣s∣≥p can be divided into three parts, s=xyz, satisfying all three of the following 
conditions: 

1. ∣y∣≥1: The middle segment y must not be an empty string. This ensures that there is 
indeed a substring that can be "pumped" (repeated or removed). If y were empty, 
pumping it wouldn't change the string, and the lemma would be trivially satisfied for 
all languages. 

2. ∣xy∣≤p: The combined length of the prefix x and the middle segment y must be less 
than or equal to the pumping length p. This condition is crucial. It implies that the 
"loop" (represented by y) that allows pumping must occur entirely within the first p 
characters of the string. This is a direct consequence of the Pigeonhole Principle: if a 
string has length at least p and is accepted by a p-state DFA, then a state must 
repeat within the first p transitions. 

3. For all i≥0, the string xyiz∈L: This is the "pumping" property. It states that if you 
repeat the middle segment y zero times (xy0z=xz), one time (xy1z=xyz, the original 
string), two times (xy2z), or any number of times, the resulting string will still belong 
to the language L. 

Intuition behind the Pumping Lemma: 

The Pumping Lemma's existence is a direct consequence of the finite number of states in 
any DFA that recognizes a regular language. If a regular language L is recognized by a DFA 
M with p states, and we feed M an input string s whose length is greater than or equal to p 



 

(∣s∣≥p), then by the Pigeonhole Principle, M must enter at least one state more than once 
during the processing of the first p symbols of s. This repeated state creates a cycle or loop 
in the DFA's state diagram. 

● The string segment before the first occurrence of the repeated state is x. 
● The string segment that takes the DFA from the first occurrence of the repeated state 

back to itself is y. This is the "pumpable" part. Since it's a loop, it must have length at 
least 1. 

● The string segment after the second occurrence of the repeated state is z. 

Because y corresponds to a loop, the DFA can traverse this loop any number of times 
(including zero times, effectively skipping the loop) and still end up in the same state it would 
have been in after just one traversal of the loop. If the original string s=xyz led to an 
accepting state, then xyiz for any i≥0 will also lead to that same accepting state, and 
therefore will also be accepted by the DFA. 

How to Use the Pumping Lemma to Prove Non-Regularity (Proof by Contradiction): 

The Pumping Lemma is a powerful weapon for proving non-regularity. The typical strategy is 
a proof by contradiction: 

1. Assume the language L is regular. This is the critical starting assumption that you 
aim to contradict. If L is regular, then the Pumping Lemma must apply to it. 

2. Let p be the pumping length. State that by the Pumping Lemma, there exists some 
integer p≥1. You don't need to know the specific value of p; its existence is sufficient 
for the proof. 

3. Choose a specific string s∈L such that ∣s∣≥p. This is often the most challenging 
and crucial step. The string s must be chosen carefully so that no matter how it's 
divided according to the Pumping Lemma's rules, a contradiction can be derived. A 
common strategy is to choose s to highlight the "unbounded counting" aspect of the 
language, often involving p itself in the definition of s (e.g., apbp, 0p1p, ap, etc.). 

4. Show that for any possible division of s into xyz that satisfies conditions (1) 
and (2) of the Pumping Lemma, there exists an integer i≥0 such that xyiz∈/L. 

○ Analyze the division: Based on your choice of s and condition (2) (∣xy∣≤p), 
determine the possible structures of x, y, and z. This step often requires 
careful case analysis if s contains multiple types of symbols. Remember that 
y must not be empty (∣y∣≥1). 

○ Perform the "pumping": Choose a value for i (most commonly i=0 or i=2, 
but sometimes other values work best) and form the string xyiz. 

○ Show the contradiction: Prove that xyiz does not satisfy the properties 
required for membership in L. This could be because the counts of symbols 
are no longer equal, the order of symbols is violated, or some other 
language-specific property is broken. 

5. Conclude the contradiction. Since assuming L is regular led to a violation of the 
Pumping Lemma's conditions, the initial assumption must be false. Therefore, L is 
not a regular language. 

Example Proof of Non-Regularity using Pumping Lemma: 



 

Prove that the language L={w∈{0,1}∗∣w has an equal number of 0s and 1s} is not regular. 

This language includes strings like ϵ,01,10,0011,0101,1100,…. 

1. Assume L is regular. 
By the Pumping Lemma, there exists a pumping length p≥1. 

2. Choose a string s∈L such that ∣s∣≥p. 
A strategic choice for s would be one that clearly exposes the need for counting. Let's 
choose s=0p1p. 

○ s∈L because it has p zeros and p ones (an equal number). 
○ ∣s∣=2p, which is ≥p. 

3. Apply the Pumping Lemma conditions to s. 
According to the Pumping Lemma, s can be divided into s=xyz such that: 

○ ∣y∣≥1 
○ ∣xy∣≤p 
○ xyiz∈L for all i≥0. 

4. Let's analyze the structure of x, y, and z based on condition (2), ∣xy∣≤p. 
Since s=0p1p, the first p characters are all '0's. 
Therefore, the segment xy must consist entirely of '0's. 
This implies that x is a string of '0's, y is a non-empty string of '0's, and z consists of 
the remaining '0's (if any) followed by all the '1's. 
So, we can write: 

○ x=0j for some j≥0. 
○ y=0k for some k≥1 (because ∣y∣≥1). 
○ z=0m1p for some m≥0. 
○ And j+k+m=p (because xyz=0p1p). 

5. Find an i that leads to a contradiction. 
Let's consider pumping with i=2. The Pumping Lemma states that xy2z must be in L. 
Substituting our components: 
xy2z=(0j)(0k)2(0m1p)=(0j)(02k)(0m1p)=0j+2k+m1p. 
We know that j+k+m=p. 
So, j+2k+m=(j+k+m)+k=p+k. 
Therefore, xy2z=0p+k1p. 
Now, let's examine the number of 0s and 1s in 0p+k1p: 

○ Number of 0s = p+k. 
○ Number of 1s = p. 

6. Since k≥1 (from ∣y∣≥1), it means p+k>p. 
Thus, the number of 0s in 0p+k1p is strictly greater than the number of 1s. 
For a string to be in L, it must have an equal number of 0s and 1s. 
Therefore, 0p+k1p∈/L. 
This contradicts the third condition of the Pumping Lemma, which states that xyiz 
(specifically xy2z in this case) must be in L. 

Conclusion: 

Since our initial assumption that L is a regular language led to a contradiction with the 
Pumping Lemma, our assumption must be false. Therefore, the language L={w∈{0,1}∗∣w 
has an equal number of 0s and 1s} is not a regular language. 



 

The Pumping Lemma is a powerful and elegant mathematical tool that formalizes the 
memory constraints of finite automata, enabling rigorous proofs of non-regularity. 
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